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ŽWe argue that in extensive decision problems extensive games with a single
.player with imperfect recall care must be taken in interpreting information sets

and strategies. Alternative interpretations allow for different kinds of analysis. We
address the following issues: 1. randomization at information sets; 2. consistent
beliefs; 3. time consistency of optimal plans; 4. the multiselves approach to decision
making. We illustrate our discussion through an example that we call the ‘‘paradox
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1. INTRODUCTION

This paper is an examination of some modelling problems regarding
imperfect recall within the model of extensive games. It is argued that, if
the assumption of perfect recall is violated, care must be taken in inter-
preting the main elements of the model. Interpretations that are inconse-
quential under perfect recall have important implications in the analysis of
games with imperfect recall.
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The distinction between perfect and imperfect recall for extensive games
Ž .was introduced in Kuhn 1953 . Since then, traditional game theory has

excluded games with imperfect recall from its scope. In this paper, we wish
to readdress this topic. Since the interpretative issues on the agenda
appear within the framework of extensive games with a single player, we
confine our discussion to decision problems with imperfect recall.

Extensive decision problems are a special case of extensive games in
that the set of players is a singleton. Our basic understanding of an
extensive decision problem includes the following assertions:

1. Informational assumptions are modeled by partitioning the situa-
Ž .tions histories where the decision maker takes an action into ‘‘informa-

tion sets.’’ The interpretation of the ‘‘informational structure’’ is that the
decision maker knows the information set he is at but, if an information
set is not a singleton, he cannot distinguish among the points in the set he
has reached. The decision maker, however, can make inferences or form a
belief.

2. A strategy for the decision maker assigns to each information set
one distinct action which is executed whenever an information set is
reached. The decision maker cannot plan to assign different actions to two
histories which lie in the same information set.

3. If the decision maker assesses his strategy at an information set
including more than one history, he forms beliefs about the histories which
led to it. These beliefs are the basis for his considerations.

A decision problem exhibits imperfect recall if, at a point of time, the
decision maker holds information which is forgotten later on. Specifically,
an information set includes some histories which are incompatible with
previously held information. Figures 1]3 are examples that illustrate three
main aspects of imperfect recall in decision problems.

The standard motive of imperfect recall appears in Example 2. The
decision maker is initially informed about the move of chance and loses

FIG. 1. Example 1.
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FIG. 2. Example 2.

this information upon reaching the information set d . In Example 3, the3
decision maker forgets his initial move at the information set d . Example2
Ž .1 which is central in this paper is rather unconventional; the decision

maker does not distinguish between the first and the second nodes.
Reaching the second node, he loses the information that he had previously
made a choice. The inability of a decision maker to distinguish between
two histories on the same path will be referred to as absentmindedness.

In the above examples, the information sets determine the ability of the
decision maker to recall. In practice, a decision maker can affect what he
remembers. In this paper, however, we assume that the decision maker is
not allowed to employ an external device to assist him in keeping track of
the information which he would otherwise lose. Thus, we sidestep the
decision maker’s considerations regarding the trade-off between ‘‘more
memory’’ and ‘‘memory costs.’’

FIG. 3. Example 3.
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The common interpretation of a decision problem with imperfect recall
refers to a situation in which an individual takes several successive actions
and faces memory constraints. Imperfect recall, however, is not necessarily
related to the mental phenomenon of memory loss and may also reflect
the imperfect ability to make the inferences necessary for distinguishing
among different points in the same information set. A decision maker may
not realize that he is at the 17th exit along a highway, either because he
does not recall whether he has passed the 16th intersection, or because he
cannot infer that he is at the 17th intersection, despite the perfect pictures
of each intersection in his mind. The latter interpretation of imperfect
recall brings our discussion closer to the topic of ‘‘bounded rationality.’’

Ž .An alternative interpretation is found in Isbell 1957 . The decision
maker is an organization consisting of many agents who have the same
interests and act at different possible instances. In this case, the decision
process of the organization may exhibit imperfect recall either because it
must keep the instructions given to agents acting in successive situations
simple or because of communication problems between agents. Agents
receive instructions on how to behave and the collection of these instruc-
tions is equivalent to the notion of a strategy.

From a psychological point of view, imperfect recall is a very important
phenomenon as it puts severe constraints on a decision maker’s behavior.
We believe, however, that the ultimate proof for its relevance in economic
analysis can only come from an interesting model which clearly explains an
economic phenomenon. Constructing such a model is beyond the confines
of this paper.

The structure of the paper is as follows. We begin by presenting an
example which we call the ‘‘paradox of the absentminded drï er.’’ This
example is used to illustrate many of the points of this paper and will be
referred to repeatedly.

After providing the formal definition of the model, we discuss two issues
of importance for decision problems with absent-mindedness. First, in
Section 4, we review the circumstances in which whether the decision
maker is allowed to randomize affect the analysis. Second, in Section 5, we
show that the extension of Bayesian updating to decision problems with
absentmindedness is not trivial.

The two main topics which will be addressed are the timing of decision
and the multiself approaches. The significance of these issues is marginal
in decision problems with perfect recall since possible answers are inconse-
quential for the analysis.

Ž .i Timing of decision. This issue deals with the interpretation of an
information set as either a point of decision or a point in which a strategy
is executed. In Section 6, we will show that for decision problems with



DECISIONS AND IMPERFECT RECALL 7

imperfect recall optimal strategies may be time inconsistent and that
strategies which are time consistent may not be optimal. The timing of
decisions can be an important consideration for a decision maker whereas,
with perfect recall, there is no reason to make some decisions at a
particular point of time.

Ž .ii The multisel̈ es approach to decision making. Standard dynamic
inconsistencies are generally addressed by assuming that the decision
maker acts as a collection of distinct ‘‘selves’’ who behave independently.
The behavior of the decision maker is analyzed as an equilibrium. In
Section 7, we extend the multiself approach to decision problems with
imperfect recall and show that in this extension an optimal strategy is
dynamically consistent.

2. THE PARADOX OF THE ABSENTMINDED DRIVER

An individual is sitting late at night in a bar planning his midnight trip
home. In order to get home he has to take the highway and get off at the

Ž .second exit. Turning at the first exit leads into a disastrous area payoff 0 .
Ž .Turning at the second exit yields the highest reward payoff 4 . If he

continues beyond the second exit, he cannot go back and at the end of the
Ž .highway he will find a motel where he can spend the night payoff 1 . The

driver is absentminded and is aware of this fact. At an intersection, he
cannot tell whether it is the first or the second intersection and he cannot

Žremember how many he has passed one can make the situation more
.realistic by referring to the 17th intersection . While sitting at the bar, all

he can do is to decide whether or not to exit at an intersection. We exclude
at this stage the possibility that the decision maker can include random
elements in his strategy. Example 1 describes this situation.

Planning his trip at the bar, the decision maker must conclude that it is
impossible for him to get home and that he should not exit when reaching
an intersection. Thus, his optimal plan will lead him to spend the night at
the motel and yield a payoff of 1. Now, suppose that he reaches an
intersection. If he had decided to exit, he would have concluded that he is
at the first intersection. Having chosen the strategy to continue, he
concludes that he is at the first intersection with probability 1r2. Then,
reviewing his plan, he finds that it is optimal for him to leave the highway
since it yields an expected payoff of 2. Despite no new information and no
change in his preferences, the decision maker would like to change his
initial plan once he reaches an intersection! Note that if the decision
maker now infers that he would have exited the highway had he passed the
first intersection, his reasoning becomes circular; he must conclude that he
is at the first intersection and that it is optimal to continue.
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We wish to emphasize that this is not a standard example of time
inconsistency. Usually, time inconsistency is obtained as a consequence of

Ž .changes in either preferences tastes or information regarding the moves
of nature during the execution of the optimal plan. Here, preferences over
final outcome are constant and the only factor intervening between plan-
ning and execution of the optimal strategy is the occurrence of the
situation which calls for execution, that is, reaching the intersection.

We find this example paradoxical as it exhibits a conflict between two
ways of reasoning at the intersection. The first is based on a quite minimal
principle of rationality; having chosen an optimal strategy, one does not
have to verify its optimality at the time of execution unless there is a
change in information or in preferences. In our example, the decision
maker knew he would reach the intersection with certainty and his
preferences are constant. This principle leads to the conclusion that the
decision maker should stick to his plan to continue. The second way is
based on the principle which calls at each instance to maximize expected
payoffs given the relevant beliefs. In our example, this principle leads to
the conclusion of exiting. The conflict between these two potential lines of
reasoning is at the root of the apparent ambiguity of our example.

3. EXTENSIVE DECISION MODEL

In this section, a formal definition of the extensive decision model is
Ž .given. The presentation follows that of Osborne and Rubinstein 1994 .

The reader can easily identify the model with the standard definition in the
‘‘tree’’ language.

Ž . ² :A finite decision problem is a five-tuple G s H, u, C, r, I , where:

Ž .a H is a finite set of sequences. We assume that the empty se-
Ž .quence, f, is an element of H and that if a , . . . , a g H and1 K

Ž . Ž .a , . . . , a / f then a , . . . , a g H.1 K 1 Ky1
Ž .We interpret a history a , . . . , a g H as a feasible sequence of1 K

Ž .actions taken by the decision maker or by chance. The history a , . . . , a1 K
Ž .g H is terminal if there is no a , . . . , a , a g H. The set of terminal1 K

histories is denoted by Z. The set of actions available to the decision
Ž . �maker or chance after a nonterminal history h is defined by A h s a:

Ž . 4 Ž .h,a g H . To avoid degenerate cases we assume that A h contains at
least two elements. When presenting a decision problem diagramatically,
we draw H as a tree whose nodes are the set of histories with root f and

Ž . Ž .whose edges combine a node a , . . . , a with a node a , . . . , a .1 K 1 Kq1

Ž . Ž .b u: Z ª R is a utility function which assigns a number payoff to
each of the terminal histories. Preferences are defined on the set of all
lotteries over terminal histories and satisfy the VNM assumptions.
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Ž .c C is a subset of H. We assume that the chance player moves after
histories in C.

Ž .d r is the decision maker’s belief about the chance player’s behav-
Ž .ior. r assigns to each history h g C a probability measure on A h . To

Ž .avoid degeneracy, we assume that r h, a is strictly positive for all h g C
Ž .and a g A h .

Thus, the set of histories H is partitioned into three subsets:

Z, the set of terminal histories;

C, the set of histories after which chance moves;

D s H y Z y C, the set of histories after which the decision maker
moves.

Ž .e The set of information sets, which is denoted by I, is a partition of
Ž .D. We assume that for all h, h9 in the same cell of the partition A h s

Ž .A h9 ; i.e., the sets of actions available to the decision maker at histories in
the same information set are identical. For convenience, with a slight
abuse of notation, we will sometimes denote the set of actions which are

Ž .available at a history in X by A X .

Note that, in contrast to some authors, we do not exclude from the class
Žof decision problems those which exhibit absentmindedness see definition

.below .
If all information sets in I are singletons we say that G is a decision

problem with perfect information.
Ž .A pure strategy, f , is a function which assigns to every history h g D

Ž .an element of A h with the restriction that if h and h9 are in the same
Ž . Ž .information set f h s f h9 . Notice that this definition requires that the

decision maker plans an action at histories which he will not reach if he
follows the strategy.

We are now ready for the main definitions of this paper. The experience
Ž .of the decision maker at a history h in D, denoted by exp h , is the

sequence of information sets and actions of the decision maker along the
history h. We adopt the convention that the last element in the sequence

Ž .exp h is the information set which contains h. Thus, in Example 1,
Ž . Ž . Ž . Ž .exp f s d and exp B s d , B, d .1 1 1

A decision problem has perfect recall if for any two histories, h, h9 g D,
Ž . Ž .which lie in the same information set, exp h s exp h9 . Thus, in a

decision problem with perfect recall, the decision maker ‘‘remembers’’ the
succession of the information sets he has faced and the actions he has
taken. A decision problem for which the above condition is violated is
referred to as a decision problem with imperfect recall.

Ž .Given a history h s a , . . . , a and L - K, the history h9 s1 K
Ž .a , . . . , a is a subhistory of h. We say that a decision problem G exhibits1 L
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absentmindedness if there are two histories h and h9 such that h9 is a
subhistory of h and both belong to the same information set.

The decision problem illustrated in Example 1 exhibits absentminded-
Ž .ness since history B and its subhistory f are in the same information set.

4. THE VALUE OF RANDOMIZATION

In this section, we discuss the implications of enlarging the strategy set
of a decision maker to include random strategies. Given that the decision
maker behaves as an expected utility maximizer, randomization over pure
strategies is redundant for problems of either perfect or imperfect recall.
Define a mixed strategy to be a probability distribution over the set of pure
strategies. It describes a behavior in which randomization occurs only at
the outset, before the decision problem unfolds. Each pure strategy
induces a lottery over Z. A mixed strategy induces a lottery over Z which
is the compound lottery of the lotteries induced by each of the pure
strategies in its support. Therefore, no mixed strategy can be strictly
preferred to all the pure strategies.

Behavior strategies perform a different method of randomization. A
beha¨ioral strategy, b, is a function which assigns to every history h g D, a

Ž . Ž . Ž . Ž .distribution b h over A h such that b h s b h9 for any two histories h
and h9 which lie in the same information set. In decision problems without

Ž .absentmindedness b h is a lottery which is realized when the information
set which contains h is reached. For decision problems with absentminded-

Ž .ness we take b h to be a random device which is activated independently
every time the information set which includes h is reached.

Consider again Example 1. In this problem there are two pure strategies,
‘‘B’’ and ‘‘E’’ which yield payoffs of 1 and 0, respectively. Although the
absentminded driver cannot use a pure strategy to reach home with
certainty, he can toss a coin and obtain an expected payoff of 1.25. Note

1that his optimal behavioral strategy is to exit with probability and yields3
4the expected payoff of .3

It turns out that absentmindedness is necessary for behavioral strategy
Ž .to be strictly optimal. This was shown in Isbell 1957 and we provide the

proof for completeness.

PROPOSITION 1. Suppose G does not exhibit absentmindedness. Then for
any beha¨ioral strategy there is a pure strategy which yields a payoff at least as
high.

² :Con¨ersely, suppose G s H, u, C, r, I exhibits absentmindedness. Then,
² :there exist a decision problem G9 s H, u9, C, r, I and a beha¨ioral strategy

which yields a payoff strictly higher than any payoff achië ed by a pure strategy.
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Proof. See the Appendix.

The Paradox of the Absentminded Drï er Re¨isited. The inconsistency
discussed in Section 2 is not a consequence of the restriction that the
strategy set includes only pure strategies and persists when the decision
maker is allowed to choose random actions. The optimal behavioral

2strategy is to choose B with probability . Reaching the intersection, the3

driver will form beliefs about where he is. Denote by a the probability he
assigns to being at the first intersection. Then, his expected payoff is

w 2 Ž . x Ž .w Ž .xa p q 4 1 y p p q 1 y a p q 4 1 y p , where p is the probability of
� Ž . 4not exiting. The optimal p is now max 0, 7a y 3 r6a . This is inconsis-

tent with his original plan unless a s 1. In other words, his original plan is
time consistent if and only if he believes that there is no chance he has
passed the first intersection. We find such a belief unreasonable. Given his
strategy it seems natural to assign to the second intersection a probability

2which is times the probability assigned to the first intersection, which3

implies a s 0.6. The issue of consistent beliefs will be discussed in the
next section.

This type of time inconsistency can appear also in decision problems in
which the optimal strategy is pure. Consider the following example shown
in Fig. 4.

The optimal behavioral strategy is the pure strategy which selects L at
d and L at d . To verify it, denote by a and b the probabilities of1 2

2 Ž .Žchoosing L at d and d , respectively, and note that a b q 3a 1 y a 11 2
.y b is strictly less than 1 unless a s b s 1. Upon reaching the informa-

tion set d , if the decision maker concludes that he is at the two histories1
with equal probabilities, the strategy R at d and R at d yields the higher1 2
expected payoff of 1.5.

FIG. 4. Example 4.
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5. CONSISTENT BELIEFS

If information sets are to be interpreted as points of decision, Examples
1 and 4 suggest that a decision maker who acts on the basis of expected
utility maximization may be unable to execute the optimal strategy. The
first step in addressing this issue is to specify the decision maker’s beliefs
at an information set which is not a singleton. As we shall see, finding an
appropriate specification for decision problems with absentmindedness is
not conceptually trivial.

We define a belief system as a function m which assigns to any
Ž < .information set X and any history h g X a nonnegative number m h X

Ž < .such that Ý m h X s 1. The interpretation is that the decision maker,hg X
Ž < .upon reaching X, assigns probability m h X to the possibility that he is at

Ž < .h. Let p h h9, b be the probability that, conditional on reaching h9, the
history h will be realized when executing the strategy b. We denote
Ž < . Ž < .p h f,b by p h b .
Several alternatives are conceivable for the specification of the decision

maker’s beliefs. Since our objective is to examine the optimality of a
strategy during its execution, we find it natural to assume that the beliefs
of the decision maker are related in a systematic way with the strategy to
be assessed. The condition that we require a belief system m to satisfy to
be consistent with a behavioral strategy b mirrors the frequency approach
to belief formation. Namely, if an information set X is reached with

Ž < .positive probability, m h X is assumed to be equal to the long run
proportion of times in which ‘‘visiting’’ the information set X involves
being in h for a decision maker who plays the decision problem again and
again and follows b.

DEFINITION. A belief system m is consistent with the behavioral strat-
egy b if for every information set X which is reached with positive

Ž < . Ž < . Ž < .probability and for every h g X, m h X s p h b rÝ p h9 b .h9g X

Our definition of consistency imposes restrictions only on beliefs at
information sets which are reached with positive probability. Notice that,
for decision problems without absentmindedness, consistency is equivalent
to Bayes’ formula. For decision problem with absentmindedness, however,
the denominator can be greater than one. The similarity with Bayes’
formula is only notational.

To clarify this definition, consider first the absentminded driver example
1and the strategy that selects B with probability equal to . A consistent2

2belief, conditional upon the information set d , assigns probability to1 3
Ž .being at the first intersection. Consider next Example 5 see Fig. 5 and the

strategy which selects B with probability 1.
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FIG. 5. Example 5.

1Consistent beliefs at the information set d assign probability to each1 3

history in the information set.
Our definition of consistent beliefs can also be motivated as being

derived from a probability space which includes the time at which the
decision maker can be. As an illustration consider Example 5 and assume
that each action takes one unit of time. The relevant space of instances

Ž . Ž . Ž . Ž . Ž .consists of L, 1 , L, 2 , R, 1 , and R, 2 , where x, t is the instance in
which the chance player chooses x and time is t. Assuming equal probabil-
ities for each instance is consistent with the description of the chance
player in the decision problem. Then, a decision maker who is told that he
is at d updates his belief by the Bayesian formula. For example, the1
unconditional probability of the second node after R is pr4, where p is
the probability of choosing B at d , and the unconditional probability of1

1the node after R is . If p s 1, the conditional probability of each of the4
1three nodes in d is .1 3

In this paper, we adopt the above definition of consistency. However, we
find the following definition of consistency reasonable as well.

DEFINITION. A belief system m is Z-consistent with the behavioral
strategy b if for every information set X which is reached with positive
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probability and for every h g X
<m h XŽ .

< � 4Ý p z b ra h9 ¬ h9gX and is a subhistory of zŽ .� z < h is a subhistory of z4s .
<Ý p z bŽ .� z < z has a subhistory in X 4

The rationale behind this definition is that, given the behavioral strategy
b, the probability of the event that the random elements which determine

Ž < .the terminal history z are realized is p z b ; if the history z includes K
histories in which the decision maker is asked to act then he assigns to

Ž < .each of them the ex ante probability p z b rK.
To illustrate the Z-consistency, consider again the absentminded driver

1example and the strategy that selects B with probability . A Z-consistent2
3belief, conditional upon the information set d , assigns probability to1 4

being at the first intersection. In Example 5, if the behavioral strategy
selects B with probability 1, Z-consistent beliefs at the information set d1

1 1Ž .assign probability to the history L and probability to each of the2 4
Ž . Ž .histories R and R, B .

Note that the paradoxical flavor of the absentminded driver example is
unaffected by the type of consistency we adopt. Also, if the decision
problem does not exhibit absentmindedness then consistency and Z-con-
sistency are identical.

We do not have a firm view about the ‘‘right’’ definition of consistent
beliefs. The issue deserves further investigation. We wish to point out that
if the decision maker adopts Z-consistency then he is exposed to a sort of
‘‘money pump.’’ Consider Example 5 and the behavioral strategy that
selects B with probability 1. Given Z-consistent beliefs a risk neutral
decision maker, upon reaching the information set, will always accept an

Ž .agreement in which he gains $1.1 if he is at L and loses $1 otherwise. If
such an agreement is offered whenever the information set is reached, the
resulting undesirable lottery yields the decision maker $1.1 with probability
0.5 and y$2 with probability 0.5.

6. TIME CONSISTENCY

When does the decision maker make his decision? Can he decide about
the point of time at which a decision is made? To what extent can the
decision maker commit to decisions he makes? These questions are
superfluous for decision problems with perfect recall since the ex ante
optimal strategy remains optimal during its execution. In the presence of
imperfect recall, the optimal strategy may cease to be optimal along its
execution and answers to these questions are significant for the analysis.
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We say that a strategy is time consistent if there is not, at any informa-
tion set which is reached as the decision problem unfolds, a different
strategy for the remainder of the decision problem which yields a higher
expected payoff. Notice that we require the optimality to be assessed only
at the information sets and not before the initial history.

The significance of the statement that a strategy is optimal at an
information set depends on the beliefs that the decision maker is assumed
to hold. Requiring that beliefs be consistent leads to the following defini-
tion.

DEFINITION. A behavioral strategy b is time consistent if there is a
belief m consistent with b such that for every information set X which is
reached with positive probability under b,

m h p z ¬ h , b u z G m h p z ¬ h , b9 u zŽ . Ž . Ž . Ž . Ž . Ž .Ý Ý Ý Ý
hgX zgZ hgX zgZ

for any behavioral strategy b9.
The notion of time consistency that we use is a very strong criterion. We

must emphasize that it does not rest on a model of how decisions are made
at each information set. The definition presumes that the decision maker,
in principle, can commit to a future course of action. Of course, if the
decision maker is aware that a revision of the plan is possible at future
information sets, expectations of commitments are naive.

Time consistency is an assessment as to whether, conditional upon the
realization of information set, there exists an alternative rule of behavior
which yields the decision maker a higher payoff. If an optimal strategy
satisfies this criterion, the distinction with respect to information sets as
points of decision or points of execution is inconsequential for a decision
maker who is implementing it and whose beliefs are consistent. If, how-
ever, an optimal strategy fails this criterion, this distinction becomes
significant and alternative specifications of the domain of choice and the
timing of decision of the decision maker can give rise to different analyses.

A well-known result states that for decision problems with perfect recall
a strategy is optimal if and only if it is time consistent. This is not the case
for problems with imperfect recall. As we have seen, the optimal behav-
ioral strategy for the absentminded driver is not time consistent. It is easy

5to see that the only time consistent strategy is to exit with probability .9

The problem of time consistency can also arise without absentminded-
ness as Example 2 shows. The optimal strategy is to choose S at d , B at1
d , and R at d . However, upon reaching d the decision maker prefers2 3 1
using B at d and L at d . A decision maker who can postpone his1 3
decisions until he has reached d or d can make a better decision1 2
regarding the choice at d than a decision maker who decides ex ante. A3
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complete model should indicate if the domain of choice of the decision
maker includes timing of the decision and the extent of his ability to use
his knowledge at d and d to influence his choice at d .1 2 3

In the case of absentmindedness, the divergence between optimality and
time consistency is two-sided. The only optimal strategy is not time
consistent and the only time consistent strategy is not optimal. The next

Ž .example Fig. 6 shows that, even without absentmindedness, a strategy
may be time consistent and not optimal.

Consider the strategy where the decision maker plays B at both infor-
mation sets. The belief system consistent with this strategy assigns equal
probabilities to each of the histories in each of the information sets.
Therefore, this strategy is time consistent although the optimal strategy is
to choose S at both information sets.

The next proposition provides conditions under which optimal and time
consistent strategies are equivalent. Two histories are said to split at h if h
is their longest common subhistory.

PROPOSITION 2. Let G be a decision problem without absentmindedness
for which

for any information set X and two histories h9, h0 g X which split at
h g C , the information sets which appear in exp h9 are the same as inŽ .
exp h0 .Ž . Ž .)

A beha¨ioral strategy for G is optimal if and only if it is time consistent.

FIG. 6. Example 6.
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Proof. See the Appendix.

Ž .To clarify the meaning of condition ) in Proposition 2, consider first
Ž . Ž . Ž .Example 2. Both histories L, B and R, B are in d , but exp L, B s3

Ž . Ž . Ž . Ž .d , B, d and exp R, B s d , B, d . ) is violated, since at d the1 3 2 3 3
decision maker loses information about the move of chance. In Example 6,
even though at no information set the decision maker knows nature’s

Ž . Ž . Ž . Ž .move, ) is violated since exp L s L, d and exp R, B s2
Ž .R, d , B, d . Notice that, however, if the decision maker had beliefs1 2
consistent with the strategy assigning B to d and S to d , he would assign1 2

1probability one to nature’s move R immediately after R and probability 2

to both of nature’s moves when R is followed by his action B.

7. THE MULTISELF APPROACHES

Ž .For standard dynamic inconsistencies, Strotz 1956 provides a frame-
work of analysis in which every information set is assumed to be a point of
decision and the decision maker is unable to control his behavior at future
information sets. A decision maker acts as a collection of hypothetical

Ž .agents selves whose plans form an equilibrium. More precisely, for any
Ž .decision problem G define G G to be the extensive game in which each

information set of G is assigned a distinct player, and all players have the
same payoff as the decision maker. The behavior of the decision maker in

Ž .G is then analyzed as an equilibrium of G G . As is well known, any
optimal play for G is the play induced by some subgame perfect equilib-

Ž . Ž .rium of G G , and any subgame perfect equilibrium of G G corresponds
to an optimal strategy. This property has the consequence that the back-
ward induction algorithm is a procedure for solving a decision problem
with perfect information. An analogous result is valid for decision prob-
lems with perfect recall and imperfect information. In this case we use the
solution concept of sequential equilibrium which combines sequential
rationality with the requirement of consistent beliefs. The set of distribu-
tions over the terminal nodes generated by the sequential equilibria of
Ž .G G is identical to the set of distributions generated by the optimal

Ž .strategies of G see Hendon, Jacobsen, and Sloth, 1993 .
These results are called the ‘‘no single improvement’’ property; a strat-

egy is optimal if, conditional upon reaching an information set, the
decision maker cannot improve his expected payoff by changing only the
action prescribed by the strategy for that information set. It implies that it
makes no difference whether we model a decision problem piecemeal or in
its entirety. The equivalence of the single-self and the multiselves ap-
proaches for decision problems with perfect recall breaks down when we
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analyze decision problems with imperfect recall. Consider Example 3. The
Ž .optimal strategy R, r corresponds to a sequential equilibrium in the

corresponding multiself game. However, the multiself approach does not
Ž .rule out the inferior strategy L, l ; the decision maker cannot improve his

payoff by simply changing the action prescribed at a single information set.
Conditional upon being at d , the choice of L is optimal if the decision1
maker treats his behavior at d as given and unchangeable and believes he2
will play l.

The Paradox of the Absentminded Drï er Re-re¨isited. Consider again the
paradox of the absentminded driver. The formal notion of sequential
equilibrium is not applicable to decision problems with absentmindedness.
However, the requirement that the behavioral strategy at each information
set is optimal, given the consistent beliefs, is meaningful. Despite the fact
that there is only one information set, this requirement generates a strong
dependence between behavioral strategies and beliefs. As we have noted
before, the only strategy which satisfies this requirement is to exit with

5probability , whereas the strategy that maximizes expected payoffs ex ante9
1is to exit with probability . Nevertheless, one can modify the multiself3

approach to avoid the possibility that an optimal strategy does not satisfy
sequential rationality with respect to consistent beliefs.

Beliefs consistent with the optimal behavioral strategy in the paradox of
3the absentminded driver assign probability to the first intersection. If the5

decision maker anticipates that his ‘‘twin-self,’’ if asked to move again, will
1 1exit with probability , then it is optimal for him to exit with probability3 3

3 2Ž w x w xas he is indifferent between E yielding the expected payoff 0 q 45 5
8 3 1 2 2 8. Ž wŽ . Ž . x w x .s and B yielding an expected payoff of 4 q 1 q 1 s . In5 5 3 3 5 5

this modification, when considering a deviation at an information set X
from the behavioral strategy assigned to X, the ‘‘self’’ assumes that his
‘‘twin-self’’ will use the equilibrium strategy if asked again to act, regardless
of the choice he now makes. The requirement that the decision maker uses
identical randomization at all histories in the same information set is
retained only in equilibrium. In an actual play of the decision problem, if
he decides to deviate, he may use different randomizations at different
histories in the same information set.

Also notice that, for the optimal strategy to satisfy sequential rationality
in this modification of the multiself approach, the decision maker must

3believe that he is at the first intersection with probability . In particular, if5

one replaces our definition of consistency of beliefs with Z-consistency,
sequential rationality fails in this modification as well. We now define the
‘‘modified multiself’’ approach formally and prove that every optimal

Žstrategy is modified multiself consistent discussions with Bob Aumann and
.Roger Myerson were very helpful in shaping this part of the paper .
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DEFINITION. A behavioral strategy b is modified multiself consistent if
there exists a belief m consistent with b such that for every information set

Ž .X which is reached with positive probability and for every action a g A X
Ž .Ž . Ž .for which b h a ) 0 for h g X, there is no a9 g A X such that

m h P z ¬ h , a9 , b u zŽ . Ž . Ž .Ž .Ý Ý
hgX zgZ

) m h P z ¬ h , a , b u z .Ž . Ž . Ž .Ž .Ý Ý
hgX zgZ

Note that in contrast with the approach discussed in the first part of this
section, the above definition imposes requirements only on the selves
which are reached with positive probability.

PROPOSITION 3. If a beha¨ioral strategy is optimal then it is modified
multiself consistent.

Proof. See the Appendix.

Proposition 3 demonstrates that, within the framework of the ‘‘modified’’
multiself approach, the inconsistency of optimal plans for decision prob-
lems with absentmindedness evaporates. The interpretative ambiguities
originating in the paradox of the absentminded driver also vanish as the

2strategy to exit with probability is singled out as the only optimal and3

consistent strategy. The value of this resolution, however, depends on the
appropriateness of the ‘‘modified’’ multiself approach as a theory of
decision making under imperfect recall. The behavioral assumption of the
multiself approach is that each self maximizes his conditional expected
payoff given his own beliefs. In decision problems with perfect recall,
beliefs at each information set are independent of the choices of previous
selves and each self can determine the optimal decisions of future selves
by recursion. In decision problems with imperfect recall, however, the
conditional payoff of each self depends on his beliefs about the behavior of
earlier selves and the independence of beliefs and actions from previous
choices is an additional assumption. For decision problems with absent-
mindedness, the ‘‘modified’’ multiself approach assumes that a decision
maker, upon reaching an information set, takes his actions to be im-
mutable at future occurrences of that information set, no matter which
course of action he is contemplating now. At the other extreme one finds
the opposite axiom for which only one self resides in the information set
and expects that, were the information set to occur again, he would adopt
whichever behavioral rule he adopts now. In this case, the strategy to exit

5with probability would be the consistent rule of behavior for Example 1.9

These two assumptions reflect two alternative ways of reasoning at the
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information set. We find both of them to have some intuitive appeal and
neither to be universally valid.

8. FINAL COMMENTS

Our observations are only a limited exercise intended to suggest some of
the issues which a comprehensive theory of imperfect recall must confront.
We conclude our discussion with the following three comments:

a. Other types of imperfect recall. We model imperfect recall by includ-
ing in the same information set histories which contain different experi-
ences. Such histories are assumed to be indistinguishable for the decision
maker. A different type of imperfect recall is represented by a situation in
which ‘‘I know that at the first intersection I would be aware of this but at
the second intersection I do not know whether I am at the first or the
second intersection.’’ One way to model such a scenario is by nonparti-

Ž . Ž .tional informational structures see Geanakopolos, 1990 . Rubinstein 1991
discussed the difficulty of modelling considerations such as ‘‘At the first
intersection I know that I am there but if I reach the second intersection I

Žthink that there is a 10% chance that I am at the first intersection’’ see
.also Fluck, 1994 . It seems to us that new analytical frameworks are

needed to address these issues as well as issues such as partial recall of
strategy and imperfect ability to make inferences.

b. Games with imperfect recall. This paper focuses on issues related to
modeling decision problems with imperfect recall. Obviously, such issues
carry over to extensive games. Isbell and Kuhn show that the nonequiva-
lence between mixed and behavioral strategies can cause nonexistence of
Nash equilibria in behavioral strategies. Time inconsistency of optimal
strategies for some decision problems with imperfect recall makes it
possible to construct games with imperfect recall that have no equilibria
which satisfy sequential rationality with respect to consistent beliefs.

Ambiguities in the interpretation of games with imperfect recall is
probably the reason why only a handful of papers have dealt with the topic.

Ž . Ž .The few exceptions include Isbell 1957 and Alpern 1988 , who prove the
existence of mixed behavioral strategy equilibrium in a class of games with

Ž .imperfect recall, and Binmore 1992 who relates imperfect recall and
nonpartitional knowledge. The literature on machines playing repeated

Ž .games see, for example, Rubinstein, 1986 may also be interpreted as an
analysis of a class of repeated games with imperfect recall, where it is
costly for the players to distinguish between different histories of the
game. Further investigation is needed to adapt solution concepts designed
for games with perfect recall to games with imperfect recall.
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c. The paradox of the absentminded drï er. In all its forms the absent-
minded driver example exhibits a conflict between two types of reasoning.
Commitment to the ex ante optimal behavioral strategy is obviously the
normative rule of behavior.

We do not have a firm view about the resolution of the paradox. We
have investigated one resolution which requires dividing a decision maker
into multiple independent selves. Another resolution would entail the
rejection of expected utility maximization given consistent beliefs when the
information set includes histories whose probabilities depend on the
decision maker’s actions at that information set. Savage’s theory views a
state as a description of a scenario which is independent of the act. In
contrast, ‘‘being at the second intersection’’ is a state which is not indepen-
dent from the action taken at the first, and, consequently, at the second
intersection.

APPENDIX

Proof of Proposition 1. Consider an information set X and h g X. Let
Ž .Ž .b be a behavioral strategy and b h a denote the probability of choosing

Ž .a g A h at h. Since G does not exhibit absentmindedness, the expected
Ž .Ž .payoff from b can be written as Ý b h a g q g, where eachag AŽh. a

Ž . Ž .coefficient g and g are independent of b h . Consider a) g A h whicha
Ž .Ž .achieves the highest g . Setting b h a) s 1 yields a payoff at least asa

high. The claim follows by repeating the argument for every information
set.

Suppose that G exhibits absentmindedness. Then, there exist a final
Ž . Ž .history z and two distinct subhistories of z, h, a and h9, a9 , such that h

and h9 belong to the same information set and a / a9. Consider a payoff
Ž . Ž .function u9 such that u9 z s 1 and u9 z s 0 for z / z. The claim

follows, since z cannot be reached by any pure strategy, and is reached
with positive probability by any behavioral strategy which assigns a positive
probability to each action. Q.E.D.

Ž .Proof of Proposition 2. Let p b denote the payoff that the decision
Ž .maker obtains by playing b. Given an information set X, let Z X denote

Ž .the set of final histories having subhistories in X. Then, we can write p b
as

<p b s p z ¬ b u z q p z b u z .Ž . Ž . Ž . Ž . Ž .Ý Ý
Ž . Ž .zgZrZ X zgZ X

Ž .Since G does not exhibit absentmindedness, a terminal history z in Z X
Ž < . Ž < . Ž < .has a unique subhistory h in X. Thus, p z b s p h b p z h, b and



PICCIONE AND RUBINSTEIN22

Ž < .p z h9, b s 0 for h9 / h, h9 g X. Therefore,

< <p b s p z b u z q p h b p z ¬ h , b u z .Ž . Ž . Ž . Ž . Ž . Ž .Ý Ý Ý
Ž . hgX Ž .zgZrZ X zgZ X

Suppose b is optimal and not time consistent. Then, there is an informa-
tion set X and a behavioral strategy b9 such that X is reached with
positive probability under b and

m h p z ¬ h , b u z - m h p z ¬ h , b9 u z ,Ž . Ž . Ž . Ž . Ž . Ž .Ý Ý Ý Ý
hgX zgZ hgX zgZ

where m is consistent with b. Then, by the definition of consistent beliefs,

p b - p z ¬ b u zŽ . Ž . Ž .Ý
Ž .zgZrZ X

q p h ¬ b p z ¬ h , b9 u z .Ž . Ž . Ž .Ý Ý
hgX Ž .zgZ X

Ž .Denote the right-hand side of the above inequality by p 9. Define H X to
be the union of X and set of histories having subhistories in X. Consider a
decision problem G9 obtained from G by ‘‘splitting’’ any information set Y

Ž . Ž Ž .. Ž .containing histories in both H X and H y H X into Y l H X and
Ž Ž ..Y l H y H X . Define b to be a strategy for G9 which is identical to b9

at X and at any information sets after X and identical to b otherwise. By
construction, b yields p 9. Then, by Proposition 1, there exists a pure
strategy f 9 which yields in G9 a payoff of at least p 9. We now show that, by
suitably modifying f 9, one can obtain a strategy f for G which yields the
same payoff as f 9 for G9. The construction of f easily follows if we show
that, for any information set Y for G which has been split into Y 9 and Y 0
in G9, it is not possible that both Y 9 and Y 0 are reached with positive
probability under f 9. Suppose that h9 g Y 9 and h0 g Y 0 are both reached

Ž .with positive probability. By construction, one and only one of exp h9 and
Ž .exp h0 lists X. Denoting the longest history common subhistory of h9 and

˜ ˜Ž .h0 by h, ) implies that h f C. A contradiction is then obtained since f 9
˜is a pure strategy and assigns positive probability to at most one edge at h.

Thus, we can construct a strategy for G which yields at least p 9. This
contradicts the optimality of b.

Now suppose that b is time consistent. First notice that if f g D, no
absentmindedness implies that b is optimal. Suppose now that f g C and
let D be the set of information sets which contain some histories with no
subhistories in D. We first show that X g D implies that no history in X
has a subhistory in D. Suppose not and let h be a history in X g D with a

Ž .subhistory h9 in the information set X 9. By construction, exp h lists X 9
Ž .and, by no absentmindedness, X / X 9. ) then yields a contradiction
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since, by definition, X contains a history with no subhistory in D. Hence,

<p b s p h b p z ¬ h , b u z q constantŽ . Ž . Ž . Ž .Ý Ý Ý
XgD hgX Ž .zgZ X

Ž < .and p h b is independent of b since no action of the decision maker
precedes information sets in D. Since b is time consistent, b maximizes

<p h b p z ¬ h , b u zŽ . Ž . Ž .Ý Ý
hgX Ž .zgZ X

Ž Ž < .for any X g D which is reached with positive probability i.e., Ý p h bhg X
.) 0 . The claim follows. Q.E.D.

Proof of Proposition 3. Let b* be a strategy and suppose that there exist
a belief m* consistent with b*, an information set X which is reached with

Ž . Ž .Ž .positive probability, a g A X for which b* h a ) 0 for h g X and
Ž .a9 g A X such that

m* h p z ¬ h , a9 , b* u zŽ . Ž . Ž .Ž .Ý Ý
hgX zgZ

) m* h p z ¬ h , a , b* u z .Ž . Ž . Ž .Ž .Ý Ý
hgX zgZ

We will show that b* is not optimal. Let b be a behavioral strategy whiche

Ž .Ž . Ž .Ž . Ž .Ž .is identical to b* except for b h a s b* h a y e and b h a9 se e

Ž .Ž . Ž .b* h a9 q e . Let p b denote the expected payoff of playing b. We claim
Ž . Ž .that for sufficiently small positive e , p b ) p b* .e

Ž .Note that p b is defined by a polynomial in the probabilities assigned
by the strategy b to all possible actions. Fix all the probabilities at the
levels assigned by b*, except for the actions a and a9 at the information
set X, and denote those probabilities by p and p9, respectively. We use

Ž . Ž .the notation b* X to denote b* h , for any h g X. We shall assume that
Ž .Ž .b* X a9 ) 0. The reader will easily see that this assumption keeps the

notation simple and does not affect the argument of the proof.
We obtain a polynomial

Ž . Ž .d z d 9 zd Ž z . d 9Ž z .V p , p9 s u z p p9 p z ¬ b* r b* X a b* X a9 ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ý
zgZ

Ž .where d z is the number of times that the terminal history z includes a
Ž Ž ..play of a at X and similarly for d 9 z .

Ž . Ž Ž .Ž . Ž .Ž ..It is enough to show that at the point p, p9 s b* X a , b* X a9
Ž . Ž .we have dV p, p9 rdp - dV p, p9 rdp9.

Ž . Ž .Since m* is consistent with b* we have that m* h s p h ¬ b* r
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Ž .Ý p h9 ¬ b* . Thus, it is sufficient to verify that at the pointh9g X
Ž Ž .Ž . Ž .Ž ..b* X a , b* X a9

dV p , p9 rdp9 s d 9 z p z ¬ b* rb* X a9 u zŽ . Ž . Ž . Ž . Ž . Ž ..Ý
zgZ

s p h ¬ b* p z ¬ h , a9 , b* u zŽ . Ž . Ž .Ž .Ý Ý
hgX zgZ

and similarly for the partial derivative with respect to p. Q.E.D.
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